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Abstract

Let (A,m) be a complete Cohen—Macaulay local ring x a system of parameters of A and
M a finite A:= A/(x)-module. If Ext%(M,M) =0 then there exists a maximal Cohen—
Macaulay A-module L such that L/xL ~ M by a result of Auslander—Ding—Solberg. Here we
mvestigate the problem of finding a generalized Cohen—Macaulay A-module T such that
T/xT =~ M. If A is regular and (x) # m then we hope that our procedure can be useful for some
bundle constructions.

0. Introduction

Let (A,m,k) be a Noetherian local ring and x = (x{, ..., x,) a regular system of
elements of A. A lifting of a finite A-module M is a A-module L such that

(1) L/xL =M,

(2) x is a L-sequence.

If A is complete and Ext3(M, M) = 0 then M is liftable to A, i.e. there exists a lifting
L of M to A (see [1.(1.6)]).

If A is a Cohen—Macaulay local ring and x is a system of parameters of A then x is
a A-sequence and M is liftable to A if and only if there exists a maximal Cohen-
Macaulay A-module L such that L/xL = M. Thus the finite A-modules liftable to
A are exactly the modules from the image of the base change functor

F:MCM(A) - Mod 4

defined on the category of maximal Cohen—Macaulay modules by L — L/xL. So the
quoted result from [1] gives an idea about how big is the image of F. If A is an
excellent Henselian isolated singularity containing a field and k is perfect, or
[k: kP] < oo when p:= char k >0, then there exists an integer ¢ > 0 such that F is an
embedding providing x is chosen in m' (see [10, Ch. 6; 6, (4.8); 8, (2.8); 7]). Thus we
may reduce the description of MCM (A) to the description of Im F, where the result
from [1] could be helpful.
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If A is regular then all maximal Cohen—Macaulay A-modules are free and usually
we are looking to a bigger category of A-modules — the bundles i.e. the category of
finite A-modules, which are free on the punctured spectrum of A. More generally if
A is a Cohen—Macaulay ring and s is a positive integer, let €,(A) be the category of
finite A-modules E for which m® H},(E) = 0,i # dim A = dim E. By [2, (3.15)] the base
change functor

G:%6,(A) > Mod 1

defines an embedding in the same conditions as F above. Again it will be nice to give
an idea of how big is Im G and so to study finite A-modules M which are “liftable” to
%4(A), 1.e. for which there exists a A-module E such that

(') E/xE = M,

(2') x is a m*-weak E-sequence, providing (x) < m** (see [9, Appendix 10; 13]).

In this paper we give sufficient conditions for a A-module M to be “liftable™ to
¥s(A) in terms of vanishing of some Ext-groups (see Corollary 3.4 for s = 1; when
s > 1 apply Theorem 3.3 for the case I = m® and (x) < I?). The proofs follow [1, (1.6)]
in the frame of some weaker notions of liftability — the so-called relative (resp.
relative®) liftable modules, i.e. finite A-modules M for which there exists a A-module
E such that (1') holds and

(2”) x is a relative (resp. relative® ) E-sequence, (see Section 1, or [3; 5; 4, Section 5]).

The relative E-sequence seems to have a nice behaviour with respect to the Koszul
complex (see Lemma 1.3) and most of the Auslander—Ding—Solberg theory (see [1])
can be extended in this frame (see Proposition 2.3 and Corollary 2.4). However we are
able to state good sufficient conditions for liftability only in the more restrictive frame
of relative* liftability (see Theorems 2.9 and 3.5). If r = 1 then both notions coincide
and then Theorem 3.6 says that if A is a complete local ring, x € A a regular element
and T, a finite A,:= A/(x*)-module such that N:= ((0): x)r,/xT;, M:= T, /xT,
satisfy

Ext5(N,xT;) = Ext3(M,xT,) =0,

then T, is relative* liftable to A. If T, is an infinitesimal lifting of M to A; then
((0): x)r, =xTy, ie. N=0 and M = xT,. Thus the conditions above reduce to
Ext3(M, M) = 0, which remind us the Auslander-Ding-Solberg result [1, (1.6)].
Now if x is a system of parameters in A and also a relative® E-sequence then x is
a (x)-weak E-sequence (see [9] Appendix and the proof of our Theorem 3.3). This does
not imply that length (H},(E)) < cc for all i # dim A (it is true for i = 0 because we
may obtain (x)HZ(E) = 0, but nothing is known when i > 0). As we already said
above we need to show that x is a I-weak E-sequence for a certain m-primary ideal
I such that (x) < I? (see [9, Appendix 12, 13]). For this purpose we are forced to
consider a slightly more general notion the so-called the relative (resp. relative®) (x,
I)-liftable A-module. The first two sections study the infinitesimal relative (resp.
relative®)(x, I)-liftings following the ideas from [1]. Our Lemma 3.1 is just a variant
of [1, Theorem (1.2)]. Theorem 3.2 gives sufficient conditions for the existence of
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relative® (x, I)-liftings which are basical for our main result Theorem 3.3. If I = (x)
Theorem 3.2 has a stronger variant in Theorem 3.5 but this one has no applications to
generalized Cohen—Macaulay modules. In Propositions 2.12 and 3.7 we reobtain
some particular results from [1] using our frame. We end our paper with some
examples of modules which are relative* liftable but not liftable.

1. Infinitesimal relative liftings

Let (A,m) be a Noetherian local ring, x = (x4, ... .x,) a regular system of elements
in A, J=(x{,...,x,).» I>J an ideal of A, A;=A/(xq,...,Xx5), 1 <s<vr,
A, =A=A)(x), A,:= A/1J € N and M a finite A-module. A A-module L is a relatire
(x.I)-lifting of M to A if

() L/JJL=M,

(2) x is a relative L-sequence with respect to 1, i.e. for all s. 0 < s < r it holds

((xq. oo X)L Xg 1) 0V IL = (x4, ..., X)L,

L is called a relative® (x,I)-lifting of M to A if (1) holds and
(3) x is a relative* L-sequence with respect to 1, ie. for all 5. 0 < s < r it holds

(oo X)L Xg )N IL =(xq, ... X)L

(when [ = J these conditions were introduced by Fiorentini [3] and especially (3)
is studied in many papers for e.g. [5;4, Section 5]). M is relative (resp. relative®)
(x,I)-liftable to A if it has a relative (resp. relative*) (x,[)-lifting to A. Clearly
a relative* (x, I)-lifting to A is also a relative (x, I)-lifting to A.

A finite A;,;-module E is an infinitesimal relative (x. I}-lifting of a A-module T to
A if

(1" E/IJ'Ex=T,

(2 ((xqs .. . XH)IE: X 1)gNIE = (x1, ..., x;)E +IJ'E, forall s, 0 <s < r.

E is called an infinitesimal relative * (x, I)-lifting of T to A;, if (I’) holds and

(3} ((xq, ....0 X )E: xg 1) g IE = (xy, ..., x,)E+ IJ'E, forall 5,0 <s < r.

E is called an infinitesimal lifting of M to A, if E is an infinitesimal relative® (x, A)-
lifting of M to A;,, (this is the usual notion, see [1]).

Remark 1.1. Let L, be an arbitrary finite A;-module with L, /JL; = M. Then L, 1s an
infinitesimal relative (x, I )-lifting of M to A, if I = (x). If I # (x) we may not have
L,/IL; = M but (3') holds in this case. However we may have finite A,-modules
L, with L,/IJL, =~ L, which are not infinitesimal relative liftings of L, to A,. For
example, if k is a field. A = k[[Y]]. x = Y, I = (x) then L, = A,[[Z]]/(x*Z.Z% is
not an infinitesimal relative lifting of L, = L,/x*L, = A,[[Z]]1/(Z*) because
((0):x),nxL, = (x%xZ),, # x* L,.
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We now describe relative and relative* sequences in terms of Koszul complexes.
These results will be needed in the next sections. Let se N, 1 <s <r and

(5)

0o A s 5 a0 2 45 4 4, S0
be the Koszul complex defined by (xy, ...,x;). Let E be a finite A, ;-module,

UJ(E) = Ker (67 ® E), V{(E) = Im (38’ ® E). Clearly, U, (E) = ((0): x,)g, V1(E) =0,
VAE) < JE?, (V-1 (E)|0) = V(E), (Us-,(E)|0) = U(E) and Tor {(4, E) = U(E)/V,(E).

Lemma 12. Let s> 2 and u=(uy|...|us) be an element from U(E) such that
g e(xq, ..., xs-1)E + IJ'E. Then there exists an element u' € Uy;_(E) such that
u—(u'|0)e V(E) + IJE".

Proof. Let u € U,(E) be such that u, = ¥ °_] x,v, + w for some v, € E, w € IJ'E. Then
u'=u—(—xl0...0x)v; — - —(0 ... 0| — x4|x5-1)v5—1 — (0 ... O|w)

has the form (u'|0) for an element u' € U, (E) which certainly works. [J

Lemma 1.3. The following statements are equivalent:
(1) for every s, 1 < s <r it holds

(1, oo, DE: x)gnIE = (x,. ...,%x,_ )E + IJ'E,
2) for every s, 1 <s<r,

UAE)NIE* = V,(E) + LJ'E".

Proof. (1) =>(2): Induct on s. If s = 1, then (2) says that ((0): x;)EnIE = IJ'E which
is exactly (1). Suppose now s>1 and let u=(u|...|u;) be an element
from UJ(E)NIE®. We have xguge(x;,...,x;—1)IE and u;eIE. By (1) we get
uge(xy, ..., X;—1)E + IJ'E. Using Lemma 1.2 we find u’ € U,_,(E) such that

u— ('0)e V,(E) + LJ'E* < IE".

In particular u' e U, (E)n1E*"'. By induction hypothesis, it follows
weV,_(E)+1J'E*"! and so ue Vy(E) + IJ'E*. Thus < holds in (2), the other
inclusion being trivial.

(2) = (1): Let s, 1 <s<r(case s =1 was already done) and a € IE be such that
X €(xy, ... ,xs—1)JIE. Thus we have

s—1

Xs0 = Z X B
t=1
for some B, € IE. By (2) the element y:= (8, ... B,—1| — ) € U(E)nIE® belongs to
V.(E) + II'E®, i.e. the element y coincides with

(—xg0 ...0|x)py + -+ +0 ... 0] = x4|x—1)ps—1 +(—x,-1]0 ... O]x|0)ps +
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modulo IJ'E* for some p, € E. Since only the first (s — 1) tuples have the nonzero
elements on the last position, we get

s—1
x4+ Y xp elJE,
t=1

le. a€{xy....,x;~)E+ IJ'E. Thus < holds in (1), the other inclusion being
trivial. [

Proposition 1.4. Let E be a finite A, -module and T = E/IJ'E. Then
(1) E is an infinitesimal relative (x,I)-lifting of T to A,,  if and only if for every s,
1 <s<ritholds

UJ(E)nIE® = V(E) + IJ'E",

(2) E is an infinitesimal relative® (x,I)-lifting of T to A, if and only if for every s,
|l <s<rthe A;-module Eg:= A,® 4 E is an infinitesimal relative ((x, ¢, ... .x,). [A,)-
lifting of Ty= A, @, T to Ag ® 4 A4 1.

Proof. (1) follows from Lemma 1.3. For (2) it is enough to see that given s, 0 <s < r
the following statements are equivalent:

(@) (xy, ..., x)E: x4 )gnIE = (x4, ...,x)E + IJ'E,

(®) ((0): x441)g,NIE; = 1J'E",
the second follows when E; is an infinitesimal relative ({x,+,. ...,x,), IA4,)-lifting
of T,. O

Lemma 1.5. Let E be an infinitesimal relative (x,I)-lifting of T := E/IJE to A;,, and
f:E — T the canonical surjection. The assignment f(x) — (6’ ® E)(«), a € E” defines
a surjective A-morphism p:T" — JE inducing an isomorphism p:T"/ f(U,(E)) - JE.
In particular 1IJ'T /1] T A VA(T) = IJ'*'E for 1 <j < i.

Proof. p is really a map because if f(x)=f(B) for some a,feE" then
(P ®E)x— )= JUIJ'E)=0. If GP®E)x)=0 then xeU(E) and so
Kerp < f(U,(E)). the other inclusion being trivial. Clearly p is surjective and so p is
bijective. In particular p induces an isomorphism

LT /LI T ~f(UJ(E)) = LJI(T"/ f(ULE))) - IJI**E
and it is enough to note that
LT nf(U(E)) = fIJE" A U(E)) = f(IJ'E" (V,(E) + I1J'E"))
=fUJE"+(IJVE'nNVAEN)=1J'T nV.(T)

using Proposition 1.4(1); f commutes with the above intersection because
Kerfc IJ'E". [
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Proposition 1.6. With the hypothesis and the notation from Lemma 1.5, p induces
a surjective A-morphism w:U(T) — 1J'E with o(1J' ' T") = IJ'E. Moreover o gives
a surjection @:Tor{(A,T) - IJ'E with Ker& = f(U,(E))/V,(T) and the composite
map

AT I T AV T)-5 Tor 1 (A, T)— IJ'E

is the isomorphism defined by Lemma 1.5 for j = i — 1, the map vy being induced by the
inclusion 1J'"1T" < U(T).

Proof. If f(a) € U(T), x € E”, then (89 ® T)(f(«)) =0 and so (69’ ® E)(x) € 1J'E,
ie, p(U(T)) < IJ'E. Thus p defines a map w:U(T) = IJ'E. If yeIJ'E then
¥y =(69 ® E)a) for some € IJ'"'E" and f(x ) € U{T) because (67" ® T )(f () =
f(v) =0. Thus o is surjective. Since Ker p = f(U,(E)) o f(V,(E)) = V{T), @ induces
a surjection & :Tor (A, T) =~ U(T)/VAT) - 1J'E. [

Corollary 1.7. With the hypothesis and the notation from Lemma 1.5 and
Proposition 1.6, let Sy=1J""'T"/IJ""*T"'nV(T). Then the composite IJ'E =
Sr—5Tor{(A, T) is a section of &:Tor (A, T) - IJ'E, where the isomorphism
is defined in Lemma 1.5 for j =i — 1.

We close this section with some results concerning the infinitesimal relative*
(x, I')-liftings.

Lemma 1.8. Let E be an infinitesimal relative® (x,I)-lifting of T = E/IJ'E to A,
and o€ IE[ X414, ....X,], 1 €5 <r a homogeneous form of degree j, 1 <j<i.
Suppose that ¢(x)€ (X1, ...,x)E. Then there exists a homogeneous form Y €
(X1, .-, XJIE[X (, .... X,] of degree j such that ¢(x) = Y (x).

Proof. Apply induction on t =r —s. If t = 1 then ¢ = X for an ee IE and so
o(x) = xie €(xy, ...,X,_1)E. Since E is an infinitesimal relative * (x,I)-lifting of T
we get x) 'ee(xy, ...,x,_)E + IJ'E. Thus x/ 'eexiu+(x;,....x,—1)E for a
certain u € IE. The homogeneous form #:= X/ (e — x. /"' u) e IE[X,] satisfies
n(x)e(xy, ..., %—-1)E and ¢(x) = x,5(x). Thus 5(x) = A(x) for a certain homo-
geneous form Ae E[Xy,...,X,-1] of degree 1. If j=1 then y:=x,4c¢
(X4, ..., X, _ME[X., ....X,] works (J = I'). Apply induction on j. Suppose j > 1.
By induction hypothesis on j we have 5(x)=0(x) for a homogeneous form
Oe(Xy,....,X,-)IE[X,, ....X,] of degree j — 1. Then ¢(x) = x,n(x) = x,8(x) and
so Y= X,0 works.

Suppose now t > 1. Clearly ¢ can be written as ¢ = ¢’ + X, ;¢” where
o €elE[Xs+5,..-,X,]), " € IE[X 41, ....X,] are homogeneous forms of degree j
respectively j— 1. Since ¢@'(x)+ X410 "(X)e(xy, ..., X )E we get ¢@'(x)e
(x1, ...,Xs+1}E. By induction hypothesis on t we have ¢'(x)= l/7(x) for a
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certain homogeneous form ;,[7 e(Xy, ..., X+ )IE[X{, ..., X,] of degree j. We have
Y =y + X1,y for some homogeneous forms ¥’ e (X,, ... , X)IE[ X, ..., X,].

Y elE[X, 1. ....X,] of degree j respectively j — 1. It follows
Nt 0 + @) E(xy, -, X)E

and so 1/7’(x) + @"(x))€(xy. ..., X;)E + IJ'E. E being an infinitesimal relative® (x, I)-
lifting of T. Then there exists a form 6 e(x;; 1, .... %) VT E[X 14, ..., X,] of

degree j — 1 such that lﬁ’(x) + ¢"(x) — 0'(x) e(xy, ....x,)E. The homogeneous form
n=y + <p” — 0" €elE[ X4y, ..., X,] of degree j— 1 satisfies #'(x)e(xy. ....x,)E
and @(x)=y¥'(x)+ %+ (x). Thus 5'(x)=A'(x) for a certain homogeneous

form l’eE[Xl, v Xg] of degree 1. If j=1 then Y=y +x,.,4¢
(X1, ... XJE[X,, ..., X,] works. Apply induction on j. Suppose j > 1. By induction
hypothesis on j we have #'(x)=¥"(x) for a certain homogeneous form
y'eX, ... . X)IE[X,, ..., X,] of degree j — 1. Then

W+ Xos 1§ )) =P (X) 4+ Xe0 17 (X) =P (X) + x50 0 (X) + Xge 107 ()
= (%) + Xer 10 (X) = 9'(X) + X1 10" (X) = @(x).
Asyy =y + X ¥ e(Xq. ..., XHIE[X ., .... X,], we are done. [
Proposition 1.9. Let E be an infinitesimal relative® (x, I)-lifting of T = E/IJ'E to
Ay and j. s two integers, 1 <s<r,1 <j<i Then

(1) V.(EYNI1J'*1ES = [JIV,(E),
(2) U(E)nTJ/*YES = [J'V,(E) + IJ'E°.

Proof. (1) Apply induction on s. If s=1 there exist nothing to show. Suppose
s>1 and let a= (x| |o)e VAEYNTIJ'TYES, Thus a,eIJ'*'E and there
exists a homogeneous form @elE[X,, ...,X,] of degree j+ 1 such that
% — @(x)€(Xy, ..., xs—)IJ/E. Since % € V((E) there exist some p, € E such that « has
the following form

(_xs|0 0|-\'1),D1 + o + 0|—‘C |xs 1 ps 1+ Xs— 1[0 0|x1|0)ps+

As the only first (s — 1)-tuples have nonzero elements on the last position, we get
2, = Yi_ i Xy prand so o(x) € (xy, ..., x,-()E. By Lemma 1.8 there exists a homogene-
ous form Y e (X, ... . X,_ME[X{. ..., X,] of degree j + 1 such that ¢(x) = y(x).
Thus . @(x) e (xy. ...,X,-MJ'E and we have

s—1

= Z ,\‘kl*k
k=1
for some v, € IJ/E. Note that

K=o —(—xJ0 ... 0]x )y — - —(0 ... 0] — xy|xe )ty
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satisfies o' —a e IJ'V(E) and oy =0. Then (a}] ... |oi_ ) e Vs ((E)nIJ/ P TES!
and by induction hypothesis we get (| ... |as_1) e [J/V,_(E). Hencea € IJ/V (E),
1.e. the induction < holds in (1), the other being trivial.

(2) By Proposition 1.4(1) we have

UJAE)NIJI* ES = (V,(E) + IJ'ES)~ IJI 1 ES
= IJ'E® + (V(E)n IJIY1ES),

Now it is enough to apply (1). O

Lemma 1.10. Let E be an infinitesimal relative® (x, I)-lifting of T = E/IJ'E to A, ,, ],
sintegers, 1 <j<i, 1 <s<rand g:E*— E**! be the map (01| ... |o5) = (aq] ... &]0).
Then ¢ W(1J9V . (E)) = 1JIV,(E).

Proof. Let o be an element from ¢ '(IJ'V ., (E)). We have
g(a) =(— %34 110 ... Ox()py + -+ +(0 ... O] — x54 (| X() s
+ (= %10 ... 0]x1{0) ps 1 + - (n

for some p,e IJ'E. As the only first (s)-tuples have nonzero elements on the
last position, we get Y,;_,xp,=0. Thus p=(p| ... |p;)e U(E)NIJ'E* =
1J/ 'V (E) + 1J'E*. Clearly we may change p adding an element from IJ*E® because
IJ'E* is killed by multiplication with x. Then we may suppose p € IJ/~ ! V,(E). But (1)
says that « + x,,, p € [J'V,(E). Hence « € IJ/V,(E). Thus the inclusion < holds, the
other being trivial. [

2. The existence of infinitesimal relative sequence

Let M be as usual a finite A-module and T a A;-module,i > 1such that T/JT = M.
Let Sp:=1J""'T/IJ""*T"nV,(T) and v;:Sy — Tor{ (A, T) be the injective map
induced by the inclusion IJ'~1T" < U,(T) (see Proposition 1.6). Let T, = T/IJT
and vr,:Sy, = Tor{' (A, T;) be the injective map defined in Proposition 1.6. Denote
N := Coker vr,.

Lemma 2.1. Suppose that there exists an infinitesimal relative (x, I)-lifting E of T to
A;j+1 and let f-E - T be the canonical surjection. Then
(1) the following sequence

0 — Sp— Tord (A, E)— Tord(A, T)—251J'E -0

is exact, where f is induced by f and & is defined in Proposition 1.6,

(2) @ has a section induced by vy,

(3) If T/1J7* T is an infinitesimal relative (x, I )-lifting of T/I1J' T to A;,  for each,
1<j<ithenIm fx~N.
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Proof. Tensorizing with A the exact sequence
0> I'E-SESST S0
we get the following exact sequence
Tor (A, IJ'E)— Tor (A, E)~— Tor{ (A, T)—— IJ'"E = M =~ M — 0.

We have Tor{(A, IJ'E)y~IJ'E" and so Im§ =~ I1J'E"/V(E)nIJ'E" = Sg. The
map h is surjective and Ker h =1Im f=f(U,(E))/V,(T)=Ker@ (see Proposi-
tion 1.6). Thus 4 and @& coincide modulo an isomorphism of IJ'E and the above
sequence gives the exact sequence from (1). Clearly (2) follows from Corollary 1.7.
Denote Ng:= Coker vy, Ny:= Cokervy. By (1) we have Im f= Ny and the
sequernce

0 Np—Tor (A T)— 1J'E=Sr -0

is exact and split because vy := Sy — Tor{ (A, T) gives a section to @. It follows
Ng = Cokervy = N7. Since T is an infinitesimal relative (x,I)-lifting of
T..y=T/1J'"'T we get Ny = Ny, . By recurrence we get Np = Np, = N. [

Lets, 1 <s<r,S(T)=1J""'T5/1J"" ' T*AV(T)(S,(T) = Sy as in Corollary 1.7),
Ag= AJ(xq, ..., xs) and A(T):S(T) — St the map induced by the canonical inclu-
sion p(T): T* —» T" given by (ay| ... |a) = (aq] -.. |o]0 ... O). Like v4 from Corol-
lary 1.7 we have a natural inclusion v,(T): S(T) — Tor{(A,, T) and so the ST ) are
all A,-modules. In fact the S,(T) are A-modules because they are quotients of the
A-modules [J'"I1T% 1 <s<r. Let

0>S—E-T 50

be a short exact sequence of A-modules. Tensorizing with A we get the following exact
sequence

Tor /(. E)— Tor MA. T)—S7— S E/JE-“ST/JT = M —0.

Lemma 2.2. Suppose that T is an infinitesimal relative (x,I)-lifting of
T, 1:=T/IJ'"" T to A; if i > 2. Then the following statements are equivalent:

(1) E is an infinitesimal relative (x,1)-lifting of T to A, and Imgq = 1J'E,

(2) his a retraction of vy and A,(T) is injective for every s, 1 <s <r.

Proof. (2) = (1): By hypothesis h is surjective and so g = 0, i.e. w is an isomorphism.
In particular Kerw = Img < JE. We will see that Kerw < [J'E + JKerw, which
by Nakayama's Lemma will give Kerw < IJ'E, ie. Kerw =IJ'E, the other
inclusion being trivial. Let ee Kerw c JE. Then e=3%_, xu, for an element
u=(u| ... |lu,)e E". Thus w(u)e U(T). Since h is a retraction of v; by hypothesis
we get

UAT)/VAT) = Kerh + (IJ*" " + V(T))/Vi(T).
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But Kerh = Imw = w(U,(E))/V,(T) and so it follows
w(U(E)+ 1J'"T" = UJ(T)

because V,(T) = w(V,(E)) = w(U,(E)). Then w(u)e w(UJ(E)) + IJ' "' T" and we get
uelJiYE" + U(E) + (Kerw)". Thus ee IJ'E + JKerw.

Hence T = E/IJ'E and it remains to show by Proposition 1.4(1) that for every s,
1 <s <rit holds

U(E)nIE® = V{E) + IJ'E®. (%)
As T is an infinitesimal relative (x, I')-lifting of T, , we get

U(T)NITS=V(T)+ 1J'""'T*
foreach s, 1 <s <r (ifi = 1 then { *) holds obviously). It follows

U(E)nIE*c V(E)+ 1J"'E®
and the inclusion < in () holds if

(VAEY + IJ'"YES)AU(E) < Vy(E) + IJ'E".

But (V,(E) + I1J'"'ES)nU(E) = V,(E) + (IJ'"1ESAU,(E)) because Vi(E) < U(E).
Thus we should show that

IJ'7YESnU(E) < V{(E) + LJ'E®
or equivalently
' T aw(U(E) = V(T). (%)

As above UJ(T)Y/V.T) is a direct sum of IJI"'T" + V(T))/V.(T)= S and
Kerh = w(U,(E))/V,(T). Thus we get

L' T aw(U(E)) < VAT).

i.e. (**) holds for s = r. It follows
L' T aw(UlE)) < u(T) 1T TTovw(U(E)))
Cud TY ' VAT )N L T c V(T)n I T,

because A (T) is injective, in particular (= = ) holds. Since the other inclusion in () is
trivial we are done.

(1) = (2): AsImg = IJ'E, h is surjective, the morphisms @, h coincide modulo an
isomorphism defined by ¢ and so h is a retraction of vy by Lemma 2.1. After
Proposition 1.6 let w be the composite map U,(T) — U(T )/ V(T ) = Tor (4, T) % IJE.
We have uT) YKerw)= p(T) '(W(U,(E))) = w(Uy(E)). Indeed if o=
(oty] ... Jog) € T ®satisfies pu (T Wa) € w(U,(E)) then there exists § = (4] ... |B.) € U(E)
such that w(p;) is «; if j<s, otherwise 0. Thus f,elJ'E for j>s and so
0=3"_,x,B,=%5_,x0,, ie. B"=(B;| ... |B) € U(E). Consequently x = w(f’) e
w(US(E)).
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Thus Ker(@A,(T)) = w(Uy(E))/Vs(T), where Ay(T) is the map Tor{(4,, T) —
Tor {(A. T) induced by ul(T), in fact i(T)= Tor{(p,,T), ps: A, = A being the
canonical surjection. Hence

Ker (v A T)) = Ker(@A(T v (T))
= WU,(E)NIJ' YT/ V(T)n1J "1 T".
As E is infinitesimal relative (x,I)-lifting of T we get w(U(E)nIJ' 1T =
wW(UJ(E)AITES) AL T = w(VAE) + IJ'ES)n1J* ' T* = V(T )n1J'" ' T*. Thus
avrA(T) 1s injective and so A,(T) is injective too (in fact wvyA((T) gives an isomor-
phism of S(T) on (xq, ... . xJJJ'"'E and the inclusion (x,,...,x,) IJ'7'E c
IJ'E corresponds to A(T)). O

Let
0-Q(TY->P->T-0 (+)

be the exact sequence defining the first svzygy of T over A (P is the free cover of T over
A). Tensorizing ( + ) with A we get the following exact sequence:

(1) 0=Tor (A, P) - Tor YA, T)—=>QT)/IJQUT) - P/JP - M —0.

Proposition 2.3. Suppose that T is an infinitesimal relative (x, I)-lifting of the A,_ -
module T,_:= T/1J' T to A, if i > 2. Then the following statements are equivalent:
(1) There exists an infinitesimal relative (x,I)-lifting E of T to A, .,
(2) There exists a A-morphism §: Q,(T)/JQ4(T) — Sy such that Bo is a retraction of
vy and A,(T) is injective for all s, 1 <s <r.

Proof. (1) = (2): Let E be an infinitesimal relative (x,I)-lifting of T to A,,, and
fE - E/IJ'E = T the canonical surjection. Since P is free we can construct the
following commutative diagram:

0 QT) P T——0
0 1J'E E T >0

where the last vertical map is the identity. Tensorizing with A we get the following
commutative diagram:

(1) 0—— Tor {A. T) —— Q(T)JQ (T )~——> P/JP—>M—0

| | |

Tor (A.T) u IJ'E E/JJE—M—0
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with the exact rows, the first and the last vertical maps being identities. We have
St~ IJ'E by Lemma 1.5. Using Lemma 2.2 h induces a retraction of vy and A,(T)
is injective for every s, 1 <s<r. Clearly the composite map f:Q,(T)/
JQ,(T) 5 IJ'E = Sy works, where 7 is the second vertical map in the above diagram.

(2) = (1) Let g be the composite map Q,(T) = Q.(T)/JQ,(T) % Sy, where
the first map is the canonical surjection. We construct the following commutative
diagram:

0—— Q(T)——P——T—0

0 —— S;—2 > E—L sT— 50

where g is the first vertical map, the first square is cocartesian, the last vertical map is
the identity and fis uniqually defined by the commutativity of the diagram. Clearly,
the rows are exact sequences and IJ:*1E =0, i.e., E is in fact a finite A, ;-module.
Tensorizing by A the previous diagram we get

€r) 0— Tor {(A, T) —2— QTYIQT) —— P/JP—>M—0

L

Tor 1A, T) h S; ! E/JE—1 5 M-—0

where f is the second vertical map, the first and the last vertical ones being identities.
By assumptions (A(T')), are injective and h = fa is a retraction of v;. Thus E is an
infinitesimal relative (x, I')-lifting by Lemma 2.2. [

Corollary 2.4. Suppose that T, := T/1J'*' T is an infinitesimal relative (x, I)-lifting
of Ty=T/1J'T to Aj., for each j, 1 <j <1, Ext/lz(N,ST) =0, Extf;(M,ST) =0 and
(As(T))1 <5<, are injective. Then there exists an infinitesimal relative (x,1)-lifting
of TtoA,..

Proof. By Lemma 2.1 we have the following exact sequence:
0 > Sr——Tor{ (4, T) >N >0
which splits because Ext }(N ,Sr)=0. Let h be a retraction of vy and
(&r) 0 - Tor (A, T)—2— Q,(T)/JQ4(T) - P/JJP > M -0

the exact sequence associated to T as above. Since P was a projective cover of T over
A we get also that P/JP is a projective cover of M over A. Thus (¢1) defines a short
exact sequence

€r) 0 - Tor{(4 T)——— Q,(T)JQ(T) > 2;(M) -0,
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where Q ;(M) is the first syzygy of M over . Since Ext (2 (M), S1) = Ext3(M,S;) =0
we get Ext}(Q;(M),h)(é’T) = 0 and so we have the following commutative diagram:

00— Tor¥(A, T) —= QAT IQNT) — Qi(M) 50
0— S, - C Qi(M)——0

where h is the first vertical map, the first square is cocartesian and o’ has a retraction p.
Let i’ be the second vertical map above. Then f = ph’ satisfies the condition (2) from
Proposition 2.3. Indeed, we have fa = p(h'a) = pa’h = h, h being a retraction of vy.
Applying Proposition 2.3 we are done. [

Remark 2.5. The above corollary gives conditions on T for having an infinitesimal
relative (x, I')-lifting to A, ;. Unfortunately we are not able to write on T conditions
for having infinitesimal relative (x,I)-liftings to A;,; which have still infinitesimal
relative (x,I)-liftings to A;,,. Next we will see that it is possible in the frame of
infinitesimal relative* (x,I)-liftings.

Lemma 2.6. Suppose that T;.:= T/1J'*' T is an infinitesimal relative® (x,I)-lifting
of T,=T/1J' T to A, foreachj,1 <j < i, Ext X(N,S7) = 0, Ext %M, S;) = 0. Then
there exists an infinitesimal relative (x,I)-lifting of T to A, ;.

Proof. By Corollary 2.4 it is enough to show that (A(T)); < ,<, are injective. Using
Proposition 1.9(1) it is enough to show that

i TY M2V = 172 V(T).

But this follows applying successively Lemma 1.10. [

Let T, be an arbitrary finite A,-module such that T,/1JT, =M and N the
cokernel of vr,: Sy, = Tor (A, T,). Let 74(J):= @, o(®"J) be the tensor algebra
of JKi=7(J))®:Ts, K=@®. Kp Kyo1=(®@")®,T, and S:=@,. ,5,.
S,=1JK,. Note that § is a graded A-module (IJ?°K =0!) and K,., =
J® K, = K} /V(K,). the isomorphism follows tensorizing by K, the exact sequence

s

AR 2 S0

Theorem 2.7. Suppose that T, is an infinitesimal relative® (x, I)-lifting of M to A, and
Ext }(N.S) =0, Extfi(M.S) = 0. Then there exists a sequence of finite A-modules
(T,), > 3 such that for all i > 3

(1) T, is a A,-module,

(2) T, is an infinitesimal relative® (x, I)-lifting of T,_, to A,,

(3) S, ,=1J"'T,.
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Proof. Apply induction on i > 2. Suppose that T, 2 <j < i are already found. We
have
Sr_, = 2T /I 72T aV(Ti-y)

=1 T VAT ) = 1T 73T @4T o).
If i = 3 it follows S¢, = IJK, = S,. If i > 3 then we see that
YI®uTi) = LJT_ JIJ*T_ AVAT;_:)
=1J2T_/JIJV(T, )= 1J(J®,(JT,_1))

(see Proposition 1.9(1)) though 1J(J ®,T,-,) may be not isomorphic with I(J ®,
(JT;-1)yif I # J. Thus

St =112 ®T,_ ) =2 NI QT i-1)) = 13 (I &4 T,-2))
2 IJ(® )@, T,) = K-y =S,

I

because IJ2T, ; ~I1J(J®,T,-,) by Lemma 1.5. By assumption we have
Ext}(N,Si_l) =0, Extf{(M,Sﬁ 1) =0 and so there exists an infinitesimal relative*
(x,I)-lifting T; of T;_; to A, (see Lemma 2.6). We have IJ'~'T, = Sy _ by Lemma 1.5

and thus T, satisfies 3). Remains to show that T,:= T,/(x,, ...,x,) T, is an infinitesi-
mal relative (x,I)-lifting of T;— == T,_1/(xy, ..., %) T;_1, 1 <s <r (see Proposition
1.4(2)).

We have the following commutative diagram

0_’S1—1 *
A'ST_',—‘

where the rows are exact, the last two vertical maps are canonical surjections and
induce the first vertical map 7. The map 7 is surjective because of the Snake Lemma,
finducing a surjective map (xy, ... ,x) Ty = (xq, ..., %) T;_ . Tensorizing by A over
A we get the following commutative diagram

0

Tor{(A, T,-)—L) Tor{ (A4, Ti_l)_"_, S, —M=z=M 0

| L e

Tor{(A, T)—L— Tort(A, T,- ,)—— St._, M=M—0

where the rows are exact. It follows h, h are surjective and h is a retraction of
vr_, because T is an infinitesimal relative (x, I)-lifting of T;_, (see Lemma 2.2).

Let A,:= Af(xy, ..., X,). Tensorizing the bottom exact sequence from ( * ) by A over
A, we get the following exact sequence

Torf (A, T)—L— Torf*(A. T, })—2—S; - M=M >0
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By Lemma 2.2 it is enough to show that A.(T;. ,) are injectivefor | < e <r —sand i’
is a retraction of v :S¢_ — Tor{*(A, T;_,), the first condition being a consequence
of Lemma 1.10, T, _, being an infinitesimal relative* (x, I)-lifting of T;_ , by induction
hypothesis.

Remains to show that A'vy_ = 1. For this purpose we need a carefull examination
of (*x). Note that Tor{*(A, T;)= U/V, where U is the set of all tuples
(#g1y| .- 1@,) e T/ °such that ¥;_ ., x4 =0 and

I7 = <(_xr|0 0|xs+1)» 7(0 0| ‘xr|xr—1)~
( _xr—l‘o 0|xs+llo)’ >Tz

Since  xy,....x, act trivially on T, we have U/ (T,)=(T{|U).VAT,)=
((Xs4 15 ... %) TS|V) (note for example that V,(T;) contains the submodule
(x,]0 ... 0|x)T, =(x,T;10 ... 0)). Thus

TOI“?(/T, T!) = UF(TI)/VF(TI) = (Tls/(xs+1+~ rts xr) T: @ U/V
~ M@ Tor{*(A, T,)

and it is easy to see that f= 1,.@f’ modulo this isomorphism. It follows that
h=hn, where n:Tor{(A, T,_;)— Tor{s(A, T;_;) is the canonical projection
(Kerh=1Im f!). Let # be the compositt map Sy 2, Tord (A T,_,)—
Tor{(A, T,.,)., where the last map is the canonical injection (i | ... |i,)—
(0 ...0}t | .- &) Letu=(uy| ... lu,) e IJ'"*T]_, and ¢ the second vertical map
from (**). We have

(pvy_ Mcls. umod IJ' 72V (Ti— () =cls. (0 ... O|ts44| ... |#,) mod U(T;_ ;)

because V, (T, )= ((Xs41» ....x)T*_|V) and u,. ....u,€JT,_,. On the other
hand

\A'T(CIS. umod IJi_3V,.(T,,1)) = \"\(CIS. (as+1| |li,-)m0d IJ!*B 17)

=cls. (0 ... 0|+ 4| ... |&) mod Un(T,_,).

Thus ?1=¢v, , and it follows h(it)=h¢vr, =(th)vy =1 Hence
h'vy, = h?=1g, 7 being surjective and h = h'n. [

Remark 2.8. If T, = M then JT, = 0 and by our construction S, = 0 for all i > 1.
Then the conditions of Theorem 2.7 are trivially fulfilled if I = J. Indeed, the sequence
T,:=M, i>2 works. If I # J then T, can be not an infinitesimal relative® (x, I)-
lifting of M.

Theorem 2.9. Let T be a finite A{-module such that T,/JT, = M, N the kernel of the
surjection @, :Tor{(A, M} — JT (see Proposition 1.6), K, = (®"J)®,T,, S, = JK,
and §'= ®,51S,. Suppose that I = J, Ext{(N,S’) =0 and Ext3(M,S') = 0. Then
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there exists a sequence of finite A-modules (T;), » , such that for all i > 2;
(1) T, is a A-module,
(2) T; is an infinitesimal relative® (x, J)-lifting of T;_, to A,,
(3) S 1=J'T,.

The proof goes as in Theorem 2.7 but since I = J we may start the induction with
i = 1. By Remark 1.1 T is already an infinitesimal relative* (x, J)-lifting of M to A,.
Note also that N = Coker vy, by Lemma 2.1(1).

Next we try to understand which are in fact the modules (S7,); <, <; if T, is an
infinitesimal lifting of M (I = A, i.e. T, is an infinitesimal lifting of T,_, :== T;/J' ™' T,
for all 2<j<i (A, =A, T, = M). Clearly T, is an infinitesimal lifting of M if
the canonical surjection ¢:T,[ X4, .... X,] a@izoJ‘” T, given by X — x defines
a graded isomorphism ¢:M[X, ..., X,]/(X)"—(—B:':OJ"1 T,. In particular in this
case N =0.

Lemma 2.10. Let s > 1 and T, be an infinitesimal relative™ (x, I)-lifting of T;_ | =
T,/IJ'~ 1T, Then there exists an exact sequence

0 STy =2 Se s (T 1T T f(xys o, X I 2T, - 0.

Proof. Let y, be the map induced by ¢, (see Lemma 1.10 for notation). Then y; 1s
injective by Lemma 1.10. Let p,,:T{"! — T; be the (s + 1)th projection. Then
Se+ (T)/Imy, = 1J 1Ty /psy 1(IJ7 2V, 1(T;)) and remains to show that
P (1T 2V, ((T))) = (xy. ..., x,)IJ""2T,. But this is obvious because the gener-
ators of V,,,(T,) which are not in Ker p,,; have the form (0 ... 0] — x,,{/0 ... Olx;)
with 1 <j <s. Thus the composite canonical map t,: S+ 1(T,) = S,+1(T3)/Im 7y =
LV YT /(xq, ..., x)IJ 72T, works. [J

Lemma 2.11. Let T; be an infinitesimal lifting of M. Then Sy, = MUY,

Proof. Apply induction on i. If i = 1 then Sy, = JT, = M" because ¢ above is an
isomorphism. Suppose that i > 1. By Lemma 2.10 we have the following exact
sequence

O_’SS(TL)—VS—’Ss+1(Ti)—tS—> JI_ITL/(xl» vxs)JiAle _’O

foralls,1 < s < r.As T, is an infinitesimal lifting of M (¢ is an isomorphism !) we have

rosti-2 )

JTUNTlxy, oo s X)) 72T, = (X410 oo X,) LT, ;M( e

Moreover the inclusion 0:(x,. {, ... . X, 1T, > J' ' T, defines a section for z, given
by u— (0 ... 0|0(1) and so the above exact sequence splits. Thus

(r—sn—z
-1

Sy, =S8,(T) =S(T)®Pi-iM



D Popescu [ Journal of Pure and Applied Algebra 108 (1996) 279-299 295
r+i-2 _ .
But S;(T)y=J"'T; =Sy = M) by induction hypothesis. As Y7_; ("$¥i72)
=("*""!y we are done. [J

Proposition 2.12 (Auslander et al. [1, (1.5), (1.6)]). Let T, be an infinitesimal lifting of
M to A,. Suppose that Exti (M, M)=0. Then there exists a sequence of finite
A-modules (T;), » 3 such that for all i > 3, T, is an infinitesimal lifting of T, to A,.

Proof. Apply induction on i > 2. If T, is given then S, is a direct sum of copies of
M (see Lemma 2.11). In particular Ext2 (M, S;) = 0. Note also that the kernel N of the
map @, :Tori(A,;, M)— JT, is zero. Applying Theorem 2.7 we get an infinitesimal
relative® (x, A)-lifting T;,,; of T; to A;+;. The morphism vy from the following
exact sequence given by Lemma 2.1

00— ST:+1 -L-)Torf(/ll, Ti+1) - TOl'iA(Al, T,) . ST; -0

is surjective, because N = 0. Thus U, (T, ) =J'T{ 1 + V,(T,+;)and so T,, is an
infinitesimal lifting of T'; to A, (this follows as (2)=(1) in Lemma 1.3). O

3. Relative™ (x, I)-liftings over complete rings

Let T, be an infinitesimal relative* (x, I)-lifting of M to A,.
Lemma 3.1. Suppose that A is complete in the IJ-adic topology and there exists
a sequence of finite A-modulus (T;); -  such that for each i = 3 (T;) is an infinitesimal
relative® (x, I)-lifting of (T,_ ) to A;. Then there exists a relative® (x, I)-lifting T of

M to A such that T, = T/IJ*T.

Proof (after Auslanderet al. [1,(1.2)]. Fix s € N. We have the following commutative
diagram for all i > 1:

0—— 17T 4544 Tivser T 0
0—— 1J°Tiy; Tiss T, >0

where the third vertical map is the identity and the second vertical map t is the
canonical surjection. Clearly the first vertical map y induced by 7 is also surjective and
sO we get an exact sequence taking projective limits

O-V,=limIJT,,;,»T:=lmT;,, > T,—0.

1>2 i>2

It is obvious that V> [J*T.
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Now we show that T is a finite A-module. As M is finite there exists a surjective map
¢:A*— M for a certain t e N. Let ¢: A* - T be a lifting of ¢ to T (T, = T/V,!) and
0;:T - T;, je N the limit maps. By Nakayama's Lemma it follows that ¢; = ;¢ is
surjective for all j > s. We have the following commutative diagram:

AT A2 T,

0——Kerd,—— AYLJTIA 220, 7oy —50

l b

0—— Ker¢, —— AYLJIA® ——» T, ——0

where the lines and columns are exact, ¢, being induced by ¢; and the last two vertical
maps from bottom are the canonical surjections. Clearly ;. is surjective because

¢i+1 1s so. By the Snake Lemma we get also surjective the first vertical map from
bottom. Taking projective limits we get the following exact sequence:

0—— lim Ker ¢, N 0.

1>2

In particular T is finite over A. Then 1J*T is complete in the IJ-adic topology and so
V,=1J°T, thus T/IJ*T = T,. In particular T/IJ*T = T,.
It remains to show that

(10 oo s x) T X0 )T = x4y, .., X)) T (*)
for all 5, 0 < s < r. By assumptions we have

((cr. oo x)T vy Xer ), OIT = (X0 o, X)) Ty + 1T
for all i = 1. Thus

(%10 oo, X)T: X4 1)e T =(xy, ..., x )T+ 1J'T

foralli> 1. As (x;. ..., x,) T 1s closed in the IJ-adic topology we get the inclusion
c in (*), the other one being trivial. [

Theorem 3.2. Suppose that A is complete in the IJ-adic topology and ExtA1 (N,§)=0,
Extf;(M, S) =0 in the notation of Theorem 2.7. Then there exists a relative™ (x, I)-
lifting T of M to A such that T/IJ*T = T,.

The proof follows from Theorem 2.7 with the help of Lemma 3.1.
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Theorem 3.3. With the notation and hypothesis of Theorem 3.2 suppose that x is
a system of parameters in A and J < I*. Then there exists a generalized maximal
Cohen—Macaulay module T such that:

() IH,(T)Y=0,i #dimA.

(ii) T/1J*T = T,, in particular T/JT = M.

Proof. By Theorem 3.2 there exists a relative® (x,I)-lifting T of T, to A. We have
(xye oo X )T X4 )7 VIT = (xy, ..., x)T

for all s, 0 < s < r. Thus
I(xys oo X)) T Xgo ) = (xy, oo ox)T

for all s, 0 <s <r. Hence x is an I-weak T-sequence in the terminology of [9]
Appendix. Then (i) follows by [9] Appendix, Lemma 12 since J < 1%, [

Corollary 3.4. With the notation and hypothesis of Theorem 3.2 suppose that I = m,
x is a system of parameters in A and (x) = m*. Then there exists a maximal quasi-
Buchsbaum A-module T such that T/(x)T = M.

Theorem 3.5. Suppose that A is complete in the I-adic topology, I = J, Ext}(N,S’) =0
and Ext%(M,S’) = 0 in the notation and hypothesis of Theorem 2.9. Then there exists
a relative® (x,J )-lifting T of M to A such that T/J*T = T,.

The proof follows from Theorem 2.9 with the help of Lemma 3.1.
If r = 1 the Theorem 3.5 has the following easier form:

Theorem 3.6. Let (A, m) be a complete Noetherian local ring, x € A a regular element,
I=(x), T, a finite A;:=A/x*A-module, N =((0): x)5,/xT;, A== A/xA and
M = T,/xT,. Suppose that Extlg(N,le) =0, Extfi(M,le) = 0. Then there exists
a relative® (x,1)-lifting T of M to A such that T/x*T = T;.

Proof. In the notation of Theorem 2.9 we see that K,,; =(x) ® K, = K, and so
Siv1 =(X)K;+1 =S, for al i >1. Hence S, =~ S} = xT, for all i > 1 and thus the
hypothesis of Theorem 3.5 hold. [

Proposition 3.7 (Auslander et al. [1, (1.6)]). Suppose that A is complete in the (x)-adic
topology.x = (xy, ..., x,). T, is an infinitesimal lifting of M to A, and Extil(M,M) =0.
Then T, is liftable to A.

The proof follows from Proposition 2.12 and Lemma 3.1.

Example 38. Letkbeafield A =k[[Y.Z]), x =(x1,x2),x, = Y2 x, = Z% [ =(x)
and m = (Y,Z). Then M:= m/xm as a A:= A/(x)-module is not liftable to A because
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M is not free over A. Indeed a lifting L of M to A must be a MCM A-module and so
L is free over A. Then M is free over A which is not possible because dim; 4 = 4 and
dim, M = 5. Contradiction ! However m is a relative* (x, I )-lifting of M to A because
(xym: X3)mN XM = XM,

Example 3.9. Let A be a DVR, x € A alocal parameter, T, = A[[ Y]]/(x% Y2, xY),
I=(x) and M =T,/xT, 2 k[[Y]]/(Y?), k being the residue field of A. Then
((0): x)p, =(Y,x)T; and N =(Y,x)Ty/xT, = YM =k Since A=k we have
Ext}(N,xT,) =0, Ext3(M,xT,) = 0 and so Ty is relative* (x,I)-liftable to A. Such
a relative® (x,I)-lifting of T, is T = A[[ Y]]/(xY, Y ?). Certainly A[[Y]]/(Y ?) is
a lifting of M to A but there exist no lifting L of M to A such that L/x*L =~
T1(((0): x)g, #xTy!).

Example 3.10. Let k& be a field, A=k[[Y.Z]), x=Y?% T, =A,l[U]Y
(ZU — x,xU,U*) and I = (x). Clearly T, is an infinitesimal relative* (x, I)-lifting of
M =T, /xT; to A,. However there exist no infinitesimal relative (x, I )-liftings of T} to
A, because the canonical map vz, :xT; - ((0): x) 7, has no retractions (see Proposi-
tion 2.3). Indeed, let & be a retraction. We have xT; = x4, and ((0): x)5, = {(x,U)T,
because xU =0 in T;. It follows Zh(u) = h(x) = x (h is a retraction of vy !). Since
h(u) = xt for a certain t € A, we get x(Zt — 1) =0 in A, and so Z is invertible in A.
Contradiction ! Thus there exist no relative (x, I')-liftings T of M to A such that
T/x*T = T,. In particular there exist no relative* (x, I )-liftings of T; to A.
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